## APPLICATION NOTE

# Quantitation of pesticide residues in garlic and cumin using an Orbitrap Exploris 120 high-resolution mass spectrometer

Authors: Charles Yang, Ed George, Thermo Fisher Scientific, San Jose, CA

Keywords: Pesticide Explorer, AcquireX Intelligent Data Acquisition, QuEChERS, Orbitrap Exploris 120 Mass Spectrometer, Quantitation, Screening, High-Resolution Accurate Mass (HRAM), Cumin, Garlic, TraceFinder Software

#### Goal

To develop and pre-validate a multi-residue instrumental method that can be applied for high-throughput quantitation of pesticide residues in garlic and cumin at or below the current legislative requirements. The Thermo Scientific<sup>™</sup> Orbitrap Exploris<sup>™</sup> 120 mass spectrometer was operated in two different workflows: the first workflow using full-scan Data-Independent Acquisition (FS-DIA) for quantitation and confirmation, and the second using a Thermo Scientific<sup>™</sup> AcquireX<sup>™</sup> intelligent data acquisition background exclusion workflow for full spectrum filtering, retrospective analysis, and multi-parameter-based compound identification. These methods were tested for a targeted list of pesticides, with an option for future extension to a larger number of analytes.

## Introduction

The demand for quick and simple analysis for a multi-class list of pesticides in large numbers of diverse food samples in agricultural applications is growing year by year. Throughout the world, pesticides are used to control pests that are harmful to crops, humans and animals. These substances can pose a significant health threat and therefore need to be accurately detected at the lowest levels. Government agencies typically set maximum residue levels for pesticides in different products of plant and animal origin at low part per billion (ppb or  $\mu$ g/kg) levels. The regulations present significant analytical challenges with respect to the low limits of quantification and high number of target analytes.

Currently, routine LC-based methods are typically based on triple quadrupole mass spectrometry. In recent years, Thermo Scientific<sup>™</sup> Orbitrap<sup>™</sup> mass spectrometers have





become available, providing higher confidence in compound identification with quantitative capabilities comparable to triple quadrupole MS/MS. Mass accuracy (typically below 5 ppm) minimizes interferences from co-eluting analytes and matrix co-extractives, and thus reduces the potential for false positive and false negative results. Sample preparation is also a critical part of the workflow. The use of QuEChERS (Quick Easy Cheap, Effective, Rugged, and Safe) methods have been widely adopted for the extraction of pesticide residues from a wide range of food matrices including spices.

This work describes the method performance parameters using the latest benchtop LC - Orbitrap instrument, the Orbitrap Exploris 120 mass spectrometer for the quantitation of a targeted list of pesticides (Table 2) at or below legislative levels (maximum residue levels—MRLs) in both cumin and garlic matrices. The optimized method was verified according to SANTE/12682/2019<sup>1</sup> guidelines and evaluated for compliance with the EU MRL requirements.

## Experimental

#### Consumables

| Reagents                         | Part number |
|----------------------------------|-------------|
| Acetonitrile, UHPLC-MS grade     | A9561       |
| Ammonium Formate > 99%           | A115-50     |
| Methanol, UHPLC-MS grade         | A4581       |
| Formic Acid, extra pure for HPLC | 28905       |
| Water, UHPLC-MS grade            | W8-1        |

| Consumables                                                                    | Part number  |
|--------------------------------------------------------------------------------|--------------|
| Thermo Scientific™ HPLC vial                                                   | A4954-010    |
| Thermo Scientific <sup>™</sup> HPLC cap/septum                                 | C4010-60A    |
| Thermo Scientific <sup>™</sup> Accucore <sup>™</sup> aQ<br>100 x 2.1 mm 2.6 µm | 17326-102130 |

## Standards

All pesticide standards were purchased from Agilent Technologies<sup>™</sup>. See results table for the identity of all pesticides investigated for targeted analysis.

## Sample preparation

Cumin and garlic were purchased from a local market and analyzed for background levels of pesticides.

### **Calibration standard preparation**

A standard mega mix stock was prepared in 100% Acetonitrile with a final concentration of 1  $\mu$ g/mL. A 6-level matrix-matched calibration series, over the range 0.5—100 ng/mL, was prepared by post spiking blank extracts. All levels of the extracted matrix match sample (MMS) calibrants were injected eight times/level while the individual matrix extracted sample (MES, n = 5) calibrants were individually tested for extraction efficiency and reproducibility.

## Preparation of blank samples

- 1. Weigh 2 g of each powder spice into a 50 mL conical tube
- Add 15 mL of water with 1% Acetic acid to step 1 and mix for 5 min and let stand at room temperature for 10 min soaking
- 3. Add 15 mL of Acetonitrile to the above mixture
- 4. Mix vigorously for 1 min on a benchtop vortexer
- Add QuEChERS (6 g Magnesium Sulfate, 1.5 g Sodium Acetate) to the tube and shake by hand vigorously for 1 min
- 6. Place in benchtop vortexer for 5 min
- 7. Centrifuge at 4,500 rpm for 5 min at ambient temperature
- 8. Transfer supernatant layer into 15 mL conical tube
- 9. Aspirate 2 mL from step 8 and filter through a 0.45  $\mu m$  filter into a HPLC vial

## Preparation of matrix match samples (MMS)

- 1. Weigh 2 g of each spice into a 50 mL conical tube
- For MES samples—spike samples of pesticide mega mix at 1 μg/mL for the levels required at 0.5, 1, 5, 10, 50 and 100 ng/mL final; let spiked sample sit at room temperature for 30 min
- 3. For MMS samples go to next step
- 4. Add 15 mL of water with 1% Acetic acid to step 1 and mix for 5 min and sit at room temperature for 10 min soaking
- 5. Add 15 mL of Acetonitrile to the above mixture
- 6. Mix vigorously for 1 min on a benchtop vortexer

- 7. Add QuEChERS salt to the tube and shake by hand vigorously for 1 min
- 8. Place in benchtop vortexer for 5 min
- 9. Centrifuge at 4500 rpm for 5 min at ambient temperature
- 10. Aspirate or pour top layer into 15 mL vial
- 11. Aspirate 2 mL from step 8 and filter through a 0.45  $\mu m$  filter into a 15 mL conical vial
- 12. Aliquot 1 mL into individual HPLC vials and make calibration levels at 0.5, 1, 5, 10, 50, and 100 ng/mL using mega mix stock

A 1 µL sample was then injected into the LC - Orbitrap Exploris 120 mass spectrometer for analysis.

## Instrument analysis

Sample analysis was carried out on a Thermo Scientific<sup>™</sup> Vanquish<sup>™</sup> Flex Binary UHPLC system coupled to an Orbitrap Exploris 120 mass spectrometer.

| Separation         |                                   |
|--------------------|-----------------------------------|
| Column             | Accucore aQ column, 100 x 2.1 mm, |
|                    | 2.6 µm                            |
| Column temperature | 25°C                              |
| Flow rate          | 0.300 mL/min                      |
| Injection volume   | 1 μL                              |
| Mobile phase       | A: Water with 5 mM ammonium       |
|                    | formate, 0.1% formic acid         |
|                    | B: Methanol with 5 mM ammonium    |
|                    | formate, 0.1% formic acid         |
| Gradient           | Table 1                           |

#### Table 1. UHPLC gradient program.

| Time [Min] | Flow Rate<br>[mL/min] | <b>A%</b> | В% | Curve |
|------------|-----------------------|-----------|----|-------|
| 0.0        | 0.300                 | 98        | 2  | 5     |
| 1.0        | 0.300                 | 98        | 2  | 5     |
| 2.0        | 0.300                 | 50        | 50 | 5     |
| 9.0        | 0.300                 | 2         | 98 | 5     |
| 12.0       | 0.300                 | 2         | 98 | 5     |
| 12.1       | 0.300                 | 98        | 2  | 5     |
| 15.0       | 0.300                 | 98        | 2  | 5     |

| Orbitrap Exploris 120 | MS Settings            |
|-----------------------|------------------------|
| Spray voltage         | 3.5 kV                 |
| Sheath gas            | 30 arb                 |
| Aux gas               | 6 arb                  |
| Sweep gas             | 1 arb                  |
| Capillary temp.       | 290°C                  |
| Vaporizer temp.       | 350°C                  |
| lon polarity          | Pos                    |
| Full Scan mass range  | <i>m/z</i> 100–1100    |
| Full Scan resolution  | 60,000                 |
| DIA resolution        | 15,000                 |
| Q1 isolation          | <i>m/z</i> 200         |
| ddMS <sup>2</sup>     | 15,000                 |
| HCD collision energy  | Stepped nCE 18 ,35, 60 |
| RF Lens               | 60                     |

## Data acquisition and processing

Data were acquired and processed using Thermo Scientific<sup>™</sup> TraceFinder<sup>™</sup> software to ensure full automation from instrument setup to raw data collection, processing, and reporting.

**Experiment 1:** Data acquired from FS-DIA were analyzed with an extraction mass tolerance of ±5 ppm for both precursor and product ions. Analytes were quantified based on full scan precursor accurate mass. In addition, confirmation of target pesticides was performed by DIA fragment matching using a curated high-resolution spectral library.

**Experiment 2:** The samples were then analyzed for other contaminants, using a new 'data-mining' software function called AcquireX intelligent data acquisition workflow. This functionality has several workflows. One such workflow is called Background Subtraction and uses a blank matrix to automatically generate an exclusion list of matrix coextractives prior to acquisition, while using a targeted MS<sup>2</sup> inclusion list with retention times for added specificity for the targeted pesticides. Data were extracted with a mass tolerance of 5 ppm for both precursor and product ions of targeted pesticides. Analytes were first quantified using the full scan precursor mass trace and then identified using a targeted list of pesticides from a compound database and matched with a spectral library. All data were evaluated against SANTE Guidelines criteria using EC SANTE/12682/2019.1

#### **Results and discussion**

Experiment 1: Simplified in-house validation for screening and quantitative methods was carried out for targeted pesticides. The linearity of the calibration curves for MMS was assessed over the range from 0.5 to 100 ng/mL to demonstrate the potential of the method for quantitative analysis. Method selectivity and sensitivity was evaluated by comparing the blanks (garlic and cumin) and MMS (garlic and cumin) (respectively). The evaluation was based on accurate mass of the analyte at the specified retention time window (±0.1 min). Full MS scan acquisition-based quantitation using mono-isotopic match, presence of fragment ions (FI), and a high resolution curated pesticide spectral library match (LS) were additionally applied for identification according to References 1 and 2. Acceptance values were set ≤5 ppm for mass accuracy (FS, DIA and ddMS<sup>2</sup>), ±0.1 min for retention time, reproducibility at limit

of quantitation (LOQ) RSD ≤15% and limit of detection (LOD) between 15–20% RSD with at least one fragment ion (FI) present and ≥50% for LS matching, however reporting standards were set at  $\geq$ 60% and a R<sup>2</sup>  $\geq$  0.9800. The established values are shown in Table 2 for cumin and Table 3 for garlic. Figure 1 shows some select pesticides across the retention time range of the method (1–10 min); while Figure 2 demonstrates sufficient scans across each peak for accurate quantitation. Recoveries were checked for both cumin (Table 2) and garlic (Table 3) to confirm the extraction protocol was universal for both matrices at 3 different concentration levels (1.3, 6.6, and 13.3 µg/kg) and n = 5 replicates/concentration. The results show excellent recoveries between 70–120%. Some compounds in 60% range showed excellent precision between replicates and thus are allowable under SANTE guidance, Figure 3A and 3B (respectively).



Figure 1. Robust LC-MS shows a 10 ppb spiked pesticides in garlic (MMS) across the retention time range of the method (1–10 min) with extracted mass tolerance of 5 ppm.



Figure 2. Chromatogram of all pesticides in 15 min in cumin MMS spiked at 10 ppb. The peak highlighted at 5.92 min is mandipropamid, showing over 11 scans across the full scan quantitation ion used for the analysis.



Figure 3. Pesticide recoveries in cumin and garlic at 1.3, 6.6 and 13.3 ng/mL for n = 5 replicates.

#### Table 2. Table 2: Results for cumin in matrix match samples.

| Compound                         | RT   | R <sup>2</sup> | LOD<br>(ua/ka) | %RSD       | LOQ<br>(ua/ka) | %RSD | <i>m/z</i><br>(Delta) |  |  |  |
|----------------------------------|------|----------------|----------------|------------|----------------|------|-----------------------|--|--|--|
| Acetamiprid                      | 3.57 | 0.9958         | 0.5            | 5.6        | 1.0            | 7.9  | -0.5084               |  |  |  |
| Ametryn                          | 5.21 | 0.9998         | 0.5            | 4.0        | 1.0            | 3.4  | -1.0413               |  |  |  |
| Aminocarb                        | 2.92 | 0.9912         | 0.5            | 4.5        | 1.0            | 2.1  | -0.7369               |  |  |  |
| Azoxystrobin                     | 5.61 | 0.9988         | 0.5            | 10.9       | 1.0            | 6.8  | -1.2467               |  |  |  |
| Bupirimate                       | 6.38 | 0.9995         | 0.5            | 9.4        | 1.0            | 10.2 | -0.7869               |  |  |  |
| Buprofezin                       | 8.00 | 0.9997         | 0.5            | 10.9       | 1.0            | 6.3  | -0.9227               |  |  |  |
| Butafenacil (M+NH <sub>4</sub> ) | 6.28 | 0.9995         | 0.5            | 12.1       | 1.0            | 7.1  | -1.2822               |  |  |  |
| Carboxin                         | 4.63 | 0.9999         | 0.5            | 4.0        | 1.0            | 3.7  | -0.6692               |  |  |  |
| Chloroxuron                      | 6.39 | 0.9997         | 0.5            | 7.1        | 1.0            | 5.5  | -0.9520               |  |  |  |
| Difenoconazole                   | 7.63 | 0.9995         | 0.5            | 19.5       | 1.0            | 12.1 | -0.3241               |  |  |  |
| Dimethoate                       | 3.56 | 0.9940         | 0.5            | 8.7        | 1.0            | 6.3  | -0.9419               |  |  |  |
| Diniconazole                     | 7.51 | 0.9995         | 0.5            | 8.7        | 1.0            | 5.9  | -0.0527               |  |  |  |
| Epoxiconazole                    | 6.57 | 0.9998         | 0.5            | 4.3        | 1.0            | 4.4  | -0.7599               |  |  |  |
| Fenamidone                       | 5.76 | 0.9989         | 0.5            | 11.4       | 1.0            | 4.6  | -0.9582               |  |  |  |
| Fenpyroximate                    | 8.81 | 0.9997         | 0.5            | 3.6        | 1.0            | 5.2  | 0.2121                |  |  |  |
| Fluometuron                      | 4.87 | 0.9997         | 0.5            | 7.4        | 1.0            | 4.9  | -1.5277               |  |  |  |
| Fluoxastrobin                    | 6.29 | 0.9997         | 0.5            | 4.2        | 1.0            | 5.9  | -1.1107               |  |  |  |
| Furalaxyl                        | 5.61 | 0.9989         | 0.5            | 7.6        | 1.0            | 5.3  | -1.4410               |  |  |  |
| Hexythiazox                      | 8.39 | 0.9997         | 0.5            | 8.6        | 1.0            | 7.4  | -0.2012               |  |  |  |
| Isoproturon                      | 5.17 | 0.9995         | 0.5            | 4.9        | 1.0            | 3.3  | -1.2755               |  |  |  |
| Mandipropamid                    | 5.90 | 0.9991         | 0.5            | 7.5        | 1.0            | 6.3  | -0.7357               |  |  |  |
| Mefenacet                        | 6.25 | 0.9997         | 0.5            | 3.4        | 1.0            | 3.3  | -1.0224               |  |  |  |
| Methabenzthiazuron               | 5.31 | 0.9994         | 0.5            | 5.7        | 1.0 4.5        |      | -1.6961               |  |  |  |
| Methamidophos                    | 1.90 | 0.9998         | 0.5            | 4.0        | 1.0            | 4.6  | -1.4253               |  |  |  |
| Methoprotryne                    | 5.20 | 0.9998         | 0.5            | 6.2        | 1.0            | 2.8  | -0.5563               |  |  |  |
| Metribuzin                       | 4.37 | 0.9997         | 0.5            | 7.4        | 1.0            | 5.1  | -1.5369               |  |  |  |
| Monocrotophos                    | 3.25 | 0.9995         | 0.5            | 11.3       | 1.0            | 9.0  | -1.1697               |  |  |  |
| Monolinuron                      | 4.86 | 0.9995         | 0.5            | 11.7       | 1.0            | 9.1  | -1.5527               |  |  |  |
| Nitenpyram                       | 3.14 | 0.9992         | 0.5            | 5.9        | 1.0            | 6.0  | -0.7434               |  |  |  |
| Omethoate                        | 2.89 | 0.9992         | 0.5            | 3.5        | 1.0            | 2.6  | 0.4249                |  |  |  |
| Penconazole                      | 7.00 | 0.9998         | 0.5            | 6.4        | 1.0            | 6.2  | -1.0242               |  |  |  |
| Pencycuron                       | 7.48 | 0.9996         | 0.5            | 7.2        | 1.0            | 5.1  | -0.9575               |  |  |  |
| Picoxystrobin                    | 6.76 | 0.9996         | 0.5            | 11.7       | 1.0            | 3.2  | -0.9320               |  |  |  |
| Pirimicarb                       | 4.04 | 0.9996         | 0.5            | 7.0        | 1.0            | 3.4  | -0.6881               |  |  |  |
| Prometon                         | 4.76 | 0.9998         | 0.5            | 1.4        | 1.0            | 2.7  | -0.5873               |  |  |  |
| Prometryn                        | 6.00 | 0.9989         | 0.5            | 20.0       | 1.0            | 4.6  | -1.2/34               |  |  |  |
| Pyracarbolid                     | 4.52 | 0.9998         | 0.5            | 3.2        | 1.0            | 4.2  | -0.6584               |  |  |  |
| Pyridaben                        | 9.05 | 0.9997         | 0.5            | 9.5        | 1.0            | 5.0  | -1.0661               |  |  |  |
| Pyriproxyten                     | 8.30 | 0.9998         | 0.5            | 3.5        | 1.0            | 3.3  | -1.04/3               |  |  |  |
| Secoumeton                       | 4.93 | 0.9998         | 0.5            | 4.4        | 1.0            | 3.1  | -0.9921               |  |  |  |
| Siduron                          | 5.80 | 0.9983         | 0.5            | 11.9       | 1.0            | 6.7  | -0.7823               |  |  |  |
| Simetryn                         | 4.57 | 0.9998         | 0.5            | 2.5        | 1.0            | 2./  | -1.2065               |  |  |  |
| Spirodicioten                    | ŏ.// | 0.9997         | 0.5            | 10.5       | 1.0            | (.)  | -0.7003               |  |  |  |
|                                  | 6.30 | 0.9997         | 0.5            | 0.2<br>0.5 | 1.0            | 0.9  | -1.1484               |  |  |  |
| Tebufenozide ( $M-C_4H_7$ )      | 0.79 | 0.9996         | 0.5            | 9.5        | 0.1            | δ.)  | -0.9949               |  |  |  |
| rebutenpyrad                     | 8.00 | 0.9995         | 0.5            | 20.0       | 1.0            | 12.6 | -0.3030               |  |  |  |

#### Table 2. Results for cumin in matrix match samples. (continued)

| Compound            | RT   | R <sup>2</sup> |      | %RSD |         | %RSD | m/z     |  |
|---------------------|------|----------------|------|------|---------|------|---------|--|
| Tebuthiuron         | 4 45 | 0 9997         | 0.5  | 47   | 1.0     | 4.0  | -0.6862 |  |
| Terbumeton          | 4.95 | 0.9997         | 0.5  | 3.3  | 1.0     | 3.2  | -0.3174 |  |
| Terbutryn           | 5.86 | 0.9987         | 0.5  | 7.8  | 1.0     | 3.7  | -0.9583 |  |
| Thiabendazole       | 3 55 | 0.9950         | 0.5  | 4.0  | 1.0     | 7.0  | -1 3843 |  |
| Thiacloprid         | 3 74 | 0.9995         | 0.5  | 4.0  | 1.0     | 3.6  | -0.9874 |  |
| Triadimefon         | 6.12 | 0.9992         | 0.5  | 12.2 | 1.0     | 11.8 | -0.0261 |  |
| Tricvclazole        | 4.04 | 0.9994         | 0.5  | 4.3  | 1.0     | 3.4  | -0.5886 |  |
| Trifloxystrobin     | 7.59 | 0.9998         | 0.5  | 6.1  | 1.0     | 6.0  | -0.8379 |  |
| Triflumizole        | 7.81 | 0.9995         | 0.5  | 13.1 | 1.0     | 7.8  | -1.0148 |  |
| Zoxamide            | 7.19 | 0.9996         | 0.5  | 7.7  | 1.0     | 8.3  | -0.6911 |  |
| Bifenazate          | 6.29 | 0.9995         | 1.0  | 13.9 | 1.0     | 13.9 | -2.4550 |  |
| Carbofuran          | 4.32 | 0.9988         | 1.0  | 2.3  | 1.0     | 2.3  | -1.2252 |  |
| Cycluron            | 5.29 | 0.9988         | 1.0  | 14.8 | 1.0     | 14.8 | -0.4284 |  |
| Hexaconazole        | 7.21 | 0.9994         | 1.0  | 14.6 | 1.0     | 14.6 | 0.1396  |  |
| Metalaxyl           | 5.05 | 0.9986         | 1.0  | 6.2  | 1.0     | 6.2  | -0.5540 |  |
| Spinetoram 1        | 7.84 | 0.9989         | 1.0  | 11.8 | 1.0     | 11.8 | -2.9761 |  |
| Tetraconazole       | 6.49 | 0.9995         | 1.0  | 9.5  | 1.0     | 9.5  | -0.9881 |  |
| Imidacloprid        | 3.40 | 0.9898         | 0.5  | 18.6 | 5.0     | 12.5 | -1.5872 |  |
| Acephate            | 2.73 | 0.9995         | 1.0  | 15.6 | 5.0     | 3.0  | -0.3301 |  |
| Benalaxyl           | 7.05 | 0.9991         | 1.0  | 13.0 | 5.0     | 3.7  | -0.5327 |  |
| Carbendazim         | 3.33 | 0.9944         | 1.0  | 19.7 | 5.0     | 7.1  | -0.7061 |  |
| Carbetamide         | 4.15 | 0.9993         | 1.0  | 20.2 | 5.0 3.2 |      | -1.8131 |  |
| Clethodim           | 7.74 | 0.9991         | 1.0  | 15.3 | 5.0     | 5.3  | 0.4107  |  |
| Dinotefuran         | 3.00 | 0.9829         | 1.0  | 15.8 | 5.0     | 13.4 | -1.0205 |  |
| Fenazaquin          | 9.42 | 0.9993         | 1.0  | 15.9 | 5.0     | 1.9  | -1.4203 |  |
| Fenuron             | 3.57 | 0.9893         | 1.0  | 17.8 | 5.0     | 6.5  | -0.9612 |  |
| Imazalil            | 5.07 | 0.9991         | 1.0  | 7.3  | 5.0     | 1.5  | -0.5035 |  |
| Ipconazole          | 7.73 | 0.9996         | 1.0  | 9.3  | 5.0     | 2.1  | -0.3943 |  |
| Oxadixyl            | 3.98 | 0.9981         | 1.0  | 12.1 | 5.0     | 6.6  | -2.0355 |  |
| Benzoximate         | 7.33 | 0.9941         | 5.0  | 12.9 | 5.0     | 12.9 | -0.9921 |  |
| Cyromazine          | 2.60 | 0.9957         | 5.0  | 2.4  | 5.0     | 2.4  | -0.7102 |  |
| Dimethomorph        | 6.00 | 0.9983         | 5.0  | 12.4 | 5.0     | 12.4 | -1.4102 |  |
| Fenpropimorph       | 5.82 | 0.9961         | 5.0  | 3.4  | 5.0     | 3.4  | -0.6058 |  |
| Flusilazole         | 6.75 | 0.9994         | 5.0  | 5.8  | 5.0     | 5.8  | -1.2709 |  |
| Hudromothylnon      | 7.94 | 0.9946         | 5.0  | 1.7  | 5.0     | 1.7  | 1.0264  |  |
|                     | 0.10 | 0.9077         | 5.0  | 4.3  | 5.0     | 4.3  | 0.0175  |  |
| Propiograzole       | 7.11 | 0.9907         | 5.0  | 5.7  | 5.0     | 5.7  | -0.2175 |  |
| Spiroxamine         | 6.18 | 0.0000         | 5.0  | 7.0  | 5.0     | 7.0  | _1.4000 |  |
| Thiamethoxam        | 3 23 | 0.9958         | 5.0  | 8.3  | 5.0     | 8.3  | -0.6603 |  |
| Triadimenol         | 6.31 | 0.9985         | 5.0  | 5.0  | 5.0     | 5.0  | -1 0379 |  |
| Methoxyfenozide     | 6 14 | 0.9947         | 10   | 17.0 | 10.0    | 11.5 | -2 1080 |  |
| Chlorantraniliprole | 5.36 | 0.9987         | 5.0  | 11.8 | 10.0    | 5.2  | -0.4684 |  |
| Cyproconazole       | 6.07 | 0.9968         | 5.0  | 15.8 | 10.0    | 8.7  | -0.4033 |  |
| Tebufenozide        | 6.79 | 0.9570         | 10.0 | 8.8  | 10.0    | 8.8  | 0.7806  |  |

#### Table 3. Results for garlic in matrix match samples.

| Compound                         | RT   | R <sup>2</sup> | LOD<br>(ua/ka) | %RSD | LOQ<br>(ua/ka) | %RSD | <i>m/z</i><br>(Delta) |  |
|----------------------------------|------|----------------|----------------|------|----------------|------|-----------------------|--|
| Acephate                         | 2.73 | 0.9988         | 5.0            | 10.8 | 5.0            | 10.8 | -0.8276               |  |
| Acetamiprid                      | 3.57 | 0.9765         | 5.0            | 3.0  | 5.0            | 3.0  | -0.6452               |  |
| Ametryn                          | 5.21 | 0.9934         | 0.5            | 2.0  | 1.0            | 1.8  | -0.2387               |  |
| Aminocarb                        | 2.92 | 0.9951         | 5.0            | 16.3 | 10.0           | 14.4 | -1.4665               |  |
| Azoxystrobin                     | 5.61 | 0.9962         | 0.5            | 3.2  | 1.0            | 1.4  | -0.1139               |  |
| Benalaxyl                        | 7.05 | 0.9995         | 0.5            | 2.7  | 1.0            | 1.6  | 0.1222                |  |
| Benzoximate                      | 7.33 | 0.9986         | 1.0            | 6.7  | 1.0            | 6.7  | -0.1539               |  |
| Bifenazate                       | 6.29 | 0.9988         | 0.5            | 3.5  | 1.0            | 1.7  | -1.2390               |  |
| Bitertanol                       | 7.35 | 0.9994         | 0.5            | 6.4  | 1.0            | 3.5  | 2.3752                |  |
| Bupirimate                       | 6.38 | 0.9995         | 0.5            | 2.8  | 0.5            | 2.8  | -0.0171               |  |
| Buprofezin                       | 8.00 | 0.9990         | 0.5            | 2.6  | 0.5            | 2.6  | -0.2250               |  |
| Butafenacil (M+NH <sub>4</sub> ) | 6.28 | 0.9996         | 0.5            | 3.3  | 0.5            | 3.3  | 1.5084                |  |
| Carbetamide                      | 4.15 | 0.9890         | 5.0            | 1.3  | 5.0            | 1.3  | -0.9122               |  |
| Carbofuran                       | 4.32 | 0.9880         | 5.0            | 2.6  | 5.0            | 2.6  | -1.1565               |  |
| Carboxin                         | 4.63 | 0.9930         | 0.5            | 15.5 | 5.0            | 3.4  | -0.6046               |  |
| Chlorantraniliprole              | 5.36 | 0.9892         | 5.0            | 3.2  | 5.0            | 3.2  | 0.3547                |  |
| Chloroxuron                      | 6.39 | 0.9997         | 0.5            | 3.8  | 0.5            | 3.8  | -0.6375               |  |
| Clethodim                        | 7.74 | 0.9992         | 0.5            | 4.6  | 0.5            | 4.6  | -1.3688               |  |
| Clothianidin                     | 3.44 | 0.9592         | 5.0            | 6.8  | 5.0            | 6.8  | -1.3778               |  |
| Cycluron                         | 5.29 | 0.9941         | 5.0            | 8.8  | 5.0            | 8.8  | 0.0312                |  |
| Cyproconazole                    | 6.07 | 0.9976         | 0.5            | 4.2  | 1.0            | 2.4  | 0.4325                |  |
| Cyromazine                       | 2.60 | 0.9969         | 0.5            | 14.8 | 1.0            | 7.6  | -3.2670               |  |
| Difenoconazole                   | 7.63 | 0.9989         | 0.5            | 4.6  | 1.0 3.3        |      | 0.1268                |  |
| Dimethoate                       | 3.56 | 0.9844         | 5.0            | 3.3  | 5.0            | 3.3  | -0.9419               |  |
| Dimethomorph                     | 6.00 | 0.9976         | 0.5            | 3.0  | 1.0            | 2.4  | -0.4667               |  |
| Diniconazole                     | 7.51 | 0.9981         | 0.5            | 7.6  | 1.0            | 3.6  | -0.0527               |  |
| Dinotefuran                      | 3.00 | 0.9928         | 1.0            | 6.7  | 1.0            | 6.7  | 0.1815                |  |
| Epoxiconazole                    | 6.57 | 0.9997         | 0.5            | 6.5  | 1.0            | 6.9  | -0.4826               |  |
| Fenamidone                       | 5.76 | 0.9966         | 0.5            | 2.5  | 1.0            | 1.7  | 0.3129                |  |
| Fenazaquin                       | 9.42 | 0.9995         | 0.5            | 6.3  | 1.0            | 6.0  | 0.1693                |  |
| Fenbuconazole                    | 6.66 | 0.9976         | 50.0           | 4.1  | 50.0           | 4.1  | 0.3916                |  |
| Fenpropimorph                    | 5.82 | 0.9978         | 0.5            | 3.6  | 1.0            | 1.7  | -0.1043               |  |
| Fenpyroximate                    | 8.81 | 0.9992         | 0.5            | 4.7  | 0.5            | 4.7  | -0.2939               |  |
| Fenuron                          | 3.57 | 0.9799         | 5.0            | 2.9  | 5.0            | 2.9  | -0.9612               |  |
| Fluometuron                      | 4.87 | 0.9959         | 1.0            | 10.7 | 5.0            | 4.9  | 0.0434                |  |
| Fluoiastrobili                   | 6.75 | 0.9992         | 1.0            | 3.4  | 1.0            | 3.4  | -0.5769               |  |
| Fusiazole                        | 5.61 | 0.9974         | 0.5            | 2.9  | 0.5            | 2.9  | -0.5310               |  |
| Furathiocarb                     | 7.04 | 0.9903         | 50.0           | 0.3  | 50.0           | 0.3  | -0.4160               |  |
| Hevaconazole                     | 7.94 | 0.9990         | 0.5            | 3.9  | 0.5            | 3.9  | -0.4100               |  |
| Hexythiazox                      | 8.39 | 0.9997         | 0.5            | 1.4  | 0.5            | 1.4  | -0.1148               |  |
| Hydramethylnon                   | 7.86 | 0.9960         | 1.0            | 18.0 | 5.0            | 6.9  | 0.8515                |  |
| Imazalil                         | 5.07 | 0.9916         | 5.0            | 10.3 | 10.0           | 8.8  | -1.6335               |  |
| Imidacloprid                     | 3.40 | 0.9512         | 5.0            | 74   | 5.0            | 74   | -0.7529               |  |
| Ipconazole                       | 7.73 | 0.9993         | 0.5            | 3.9  | 0.5            | 3.9  | -1.1249               |  |
| Isoproturon                      | 5.17 | 0.9938         | 0.5            | 12.6 | 1.0            | 3.1  | -1.1282               |  |
| Mandipropamid                    | 5.90 | 0.9987         | 0.5            | 3.2  | 0.5            | 3.2  | -0.3655               |  |

#### Table 3. Results for garlic in matrix match samples. (continued)

| Compound                                        | RT   | R <sup>2</sup> | LOD<br>(µg/kg) | %RSD | LOQ<br>(µg/kg) | %RSD | <i>m/z</i><br>(Delta) |  |  |  |  |
|-------------------------------------------------|------|----------------|----------------|------|----------------|------|-----------------------|--|--|--|--|
| Mefenacet                                       | 6.25 | 0.9987         | 0.5            | 3.3  | 0.5            | 3.3  | -0.0021               |  |  |  |  |
| Metalaxyl                                       | 5.05 | 0.9919         | 5.0            | 16.0 | 10.0           | 7.1  | -1.2076               |  |  |  |  |
| Methabenzthiazuron                              | 5.31 | 0.9938         | 0.5            | 2.5  | 1.0            | 2.0  | -0.5967               |  |  |  |  |
| Methamidophos                                   | 1.90 | 0.9990         | 5.0            | 0.9  | 10.0           | 1.4  | -0.9955               |  |  |  |  |
| Methoprotryne                                   | 5.20 | 0.9938         | 0.5            | 3.3  | 5.0            | 3.7  | -0.2199               |  |  |  |  |
| Methoxyfenozide                                 | 6.14 | 0.9983         | 0.5            | 5.6  | 1.0            | 8.1  | 0.1237                |  |  |  |  |
| Metribuzin                                      | 4.37 | 0.9890         | 1.0            | 10.5 | 5.0            | 2.5  | -0.4019               |  |  |  |  |
| Mexacarbate                                     | 3.54 | 0.9746         | 5.0            | 9.6  | 5.0            | 9.6  | -0.6659               |  |  |  |  |
| Monolinuron                                     | 4.86 | 0.9947         | 5.0            | 17.2 | 10.0           | 8.8  | -1.0561               |  |  |  |  |
| Nitenpyram                                      | 3.14 | 0.9977         | 0.5            | 18.2 | 5.0            | 11.9 | -0.9685               |  |  |  |  |
| Omethoate                                       | 2.89 | 0.9994         | 0.5            | 7.3  | 1.0            | 2.2  | -0.2881               |  |  |  |  |
| Oxadixyl                                        | 3.98 | 0.9870         | 5.0            | 1.7  | 5.0            | 1.7  | -0.1769               |  |  |  |  |
| Penconazole                                     | 7.00 | 0.9998         | 0.5            | 2.5  | 0.5            | 2.5  | 1.0170                |  |  |  |  |
| Pencycuron                                      | 7.48 | 0.9992         | 0.5            | 2.1  | 0.5            | 2.1  | -0.7721               |  |  |  |  |
| Picoxystrobin                                   | 6.76 | 0.9993         | 1.0            | 5.1  | 1.0            | 5.1  | 2.1354                |  |  |  |  |
| Piperonyl-butoxide                              | 8.13 | 0.9988         | 5.0            | 2.8  | 5.0            | 2.8  | -0.8172               |  |  |  |  |
| Pirimicarb                                      | 4.04 | 0.9895         | 0.5            | 15.9 | 5.0            | 1.1  | -1.3899               |  |  |  |  |
| Prochloraz                                      | 7.26 | 0.9993         | 1.0            | 4.1  | 1.0            | 4.1  | -0.6600               |  |  |  |  |
| Prometon                                        | 4.76 | 0.9947         | 0.5            | 7.2  | 0.5            | 7.2  | -0.3174               |  |  |  |  |
| Prometryn                                       | 6.00 | 0.9982         | 0.5            | 2.8  | 1.0            | 1.3  | 0.2390                |  |  |  |  |
| Propiconazole                                   | 7.11 | 0.9996         | 0.5            | 6.2  | 1.0            | 4.8  | -0.0983               |  |  |  |  |
| Pyracarbolid                                    | 4.52 | 0.9927         | 0.5            | 11.1 | 1.0            | 4.9  | -0.3087               |  |  |  |  |
| Pyraclostrobin                                  | 7.31 | 0.9992         | 0.5            | 2.9  | 0.5            | 2.9  | -0.7722               |  |  |  |  |
| Pyridaben                                       | 9.05 | 0.9996         | 0.5            | 4.3  | 1.0            | 4.5  | 0.6890                |  |  |  |  |
| Pyrimethanil                                    | 5.80 | 0.9967         | 0.5            | 2.0  | 1.0            | 1.4  | -0.0508               |  |  |  |  |
| Pyriproxyfen                                    | 8.30 | 0.9994         | 0.5            | 1.7  | 0.5            | 1.7  | -0.3842               |  |  |  |  |
| Secbumeton                                      | 4.93 | 0.9945         | 5.0            | 16.3 | 10.0           | 7.9  | -0.7222               |  |  |  |  |
| Siduron                                         | 5.80 | 0.9974         | 0.5            | 2.9  | 1.0            | 2.0  | 0.1993                |  |  |  |  |
| Simetryn                                        | 4.57 | 0.9933         | 1.0            | 19.8 | 5.0            | 3.1  | 1.0027                |  |  |  |  |
| Spinetoram 1                                    | 7.84 | 0.9986         | 0.5            | 4.9  | 1.0            | 3.2  | -1.0191               |  |  |  |  |
| Spirodiclofen                                   | 8.77 | 0.9968         | 0.5            | 2.2  | 1.0            | 2.3  | -0.1807               |  |  |  |  |
| Spirotetramat                                   | 6.30 | 0.9995         | 0.5            | 2.9  | 0.5            | 2.9  | -0.1698               |  |  |  |  |
| Spiroxamine                                     | 6.18 | 0.9991         | 0.5            | 12.2 | 1.0            | 3.4  | -0.0407               |  |  |  |  |
| Tebufenozide                                    | 6.79 | 0.9995         | 1.0            | 3.5  | 5.0            | 4.0  | -0.0834               |  |  |  |  |
| Tebufenozide (M-C <sub>4</sub> H <sub>7</sub> ) | 6.79 | 0.9997         | 0.5            | 2.2  | 1.0            | 1.0  | 0.2374                |  |  |  |  |
| Tebufenpyrad                                    | 8.00 | 0.9997         | 0.5            | 2.7  | 1.0            | 1.3  | 0.4276                |  |  |  |  |
| Tebuthiuron                                     | 4.45 | 0.9915         | 0.5            | 6.8  | 1.0            | 4.5  | 0.3128                |  |  |  |  |
| Terbumeton                                      | 4.95 | 0.9944         | 5.0            | 16.4 | 10.0           | 7.7  | -1.5993               |  |  |  |  |
| Terbutryn                                       | 5.86 | 0.9978         | 1.0            | 1.5  | 5.0            | 1.3  | -0.5802               |  |  |  |  |
| Tetraconazole                                   | 6.49 | 0.9994         | 0.5            | 8.6  | 1.0            | 2.8  | -0.9881               |  |  |  |  |
| Thiabendazole                                   | 3.55 | 0.9793         | 1.0            | 18.4 | 5.0            | 3.1  | -0.0249               |  |  |  |  |
| Thiacloprid                                     | 3.74 | 0.9817         | 5.0            | 2.2  | 5.0            | 2.2  | 0.0981                |  |  |  |  |
| Triadimefon                                     | 6.12 | 0.9984         | 0.5            | 3.4  | 1.0            | 2.9  | -0.2337               |  |  |  |  |
| Triadimenol                                     | 6.31 | 0.9985         | 1.0            | 7.1  | 1.0            | 7.1  | -1.7593               |  |  |  |  |
| Tricyclazole                                    | 4.04 | 0.9880         | 0.5            | 18.7 | 5.0            | 1.6  | -0.8294               |  |  |  |  |
| Trifloxystrobin                                 | 7.59 | 0.9990         | 0.5            | 4.4  | 0.5            | 4.4  | -0.1666               |  |  |  |  |
| Triflumizole                                    | 7.81 | 0.9987         | 0.5            | 2.7  | 0.5            | 2.7  | 0.2197                |  |  |  |  |
| Zoxamide                                        | 7.19 | 0.9993         | 0.5            | 3.9  | 0.5            | 3.9  | 0.7620                |  |  |  |  |

**Experiment 2:** The implementation of the AcquireX Background Exclusion workflow also helps in identification of targeted and unknown contaminates using a unique routine to automatically create an exclusion list based on LC-MS analysis of the matrix blank. The instrument method is automatically updated with the exclusion list, so when subsequent samples are analyzed, MS<sup>2</sup> experiments are not performed on matrix background signals. As a result, more cycle time is spent on triggering MS<sup>2</sup> on the relevant ions of interest. This is groundbreaking for data processing because it minimizes false-positives and -negatives. TraceFinder software can efficiently process these new complex data files and extract results for both targeted quantitation and unknown screening workflows. TraceFinder software can easily go from a targeted quantitation workflow to unknown screening workflow by simply checking a box (Figure 4). The software can quickly utilize multi-search options, from custom spectral libraries to the multiple Thermo Scientific<sup>™</sup> mzCloud<sup>™</sup> curated spectra libraries to online ChemSpider<sup>™</sup> database searching, utilizing the Exhaustive Search feature, which can move from one search option to the next to make sure the best results are displayed from each to search criteria (Figure 5).

#### Figure 4. TraceFinder software is easily configurable to perform either a targeted quantitative or unknown screening workflows.

| le Method View Tools Help |                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------|
| ) 📂 🚽 🎒 📔 🖶 Te 1 🌻 Te     | - m + +                                                                                 |
| lethod Development 🚽 🖣    | Method View - CuminGarlic_PE_Ax_FSddMS2_V1*                                             |
| Method View               | Calibration file last used: [Local] - PesticideSpices\Pesticide Cumin Ax MMS_MES_012721 |
| Acquisition               | Mass Tolerance: 5.00 💌 🔿 MMU 💿 PPM                                                      |
| Quantitation              | Threshold Override 0                                                                    |
| Processing                | Unknown Screening                                                                       |
| Compounds                 | Include Unknown Screening                                                               |
| QAQC                      |                                                                                         |
| Unknown Screening         |                                                                                         |
| Processing                |                                                                                         |

| Thermo TraceFinder EFS LC     File Local Method Tools Help |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | – 🗖<br>Real time status į User: charles.yang į 🍘                                                                                                                                                                                                  | ×   |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 🗋 💕 🖬 🎒 🚺 🗘 To 1 💠 To                                      | i- 18 + + iv   <b>4 +</b>   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                   |     |
| Analysis 👻 🖗                                               | Local Method View - CuminGarlic_PE_Ax_FSddMS2_ScreenerV1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                   |     |
| <ul> <li>Batch View</li> </ul>                             | Master method: <u>CuminGarlic PE Ax FSddMS2 ScreenerV1</u> Peak Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Library Settinger Database Settinger Element Settinger ChemSnider Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                   |     |
| Samples                                                    | Peak Detection Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ChemSpider Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                   | , ą |
| <ul> <li>Data Review</li> </ul>                            | Autocalc defaults from rawfiles C:\Users\charles.yang\Desktop\AcquireXGarlicV2\AxGarlicV2\ME5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Internet Search Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                   |     |
| Sample View<br>Compound View                               | 256,000 Minimum MS Signal Threshold 1,000,000,000 Maximum MS Signal Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Available Databases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refresh | Cached Entries Expire After v Active Databases                                                                                                                                                                                                    |     |
| Unknown Screening View Report View                         | Looucould Maximum MS Signal Threehold     O00 Min Peak Width     O38 Max Peak Width     O48 RT Shift (minutes)     3000 RT Window (seconds)     Vise RT Limits     Search from 1.00 minutes     to 11.00 minutes     Mass tolerance 5.00 Ppm ●     Alignment and Gap Filling     Ali Peaks     Top Peaks     Top Peaks     Top Peaks     So ●     Search Coptions     Search Coptions     Search     Ubtray Search     Ubtray Search     Ditabase Search     Uithery Search     Window (seconds)     Highest Point Analysis     Bethaustive Search     Simple Search | Available Vatibases<br>ber<br>Acros Organics<br>Acros Acros Scientific<br>Action Aggregated Computational Toxicology Resource<br>Advanced ChemBlocks<br>AK Scientific<br>AK Scientific<br>Affa Aeaar<br>Affa Aeaaar<br>Affa Aeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |         | Active variabases DDMAD, Epapartment of Agri-Food Molecular Sciences, University of Milano, Italy EPA Torcsat Food and Agriculture Organization of the United Nations FoodB Particide Common Names Sigma-Aldrich Toxin, Toxin-Target Database FDA |     |
| Acquisition                                                | Number of top matches 3 🖨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                   |     |
| Analysis                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                   |     |
| Method Development                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                   | _   |

Figure 5. Unknown search parameters are easily activated by checking the box. The capabilities to search multiple mzCloud curated spectral libraries gives you the confidence of the exact match or online targeted database in ChemSpider.

Figure 6 depicts the quick and easy data review section of the quantitation workflow with sortable grids and informative information at the bottom. The highlighted compound Fenpyroximate is shown as an example of consistent mass accuracy of the Orbitrap Exploris 120 mass spectrometer. Only those "not identified" targets from the previous section will be moved down into the unknown section to be identified further using the different online database or local databases which were not used prior.

| Thermo TraceFinder FFS LC |                       |               |              |               |               |              |              |               |          |                |            |                            |                   |               |               |               |            |               |                           | -                               | a ×         |
|---------------------------|-----------------------|---------------|--------------|---------------|---------------|--------------|--------------|---------------|----------|----------------|------------|----------------------------|-------------------|---------------|---------------|---------------|------------|---------------|---------------------------|---------------------------------|-------------|
| File View Tools Help      |                       |               |              |               |               |              |              |               |          |                |            |                            |                   |               |               |               |            |               | Real tin                  | e status Ellsen charles va      |             |
|                           | - IN + + IV &         | ÷ m           |              |               |               |              |              |               |          |                |            |                            |                   |               |               |               |            |               | rear en                   | ie status į oser. enanes.yr     |             |
| Analysis 🗸 🖣              | Data Review - Pestic  | ide Cumin N   | MMS_MES      | 5_010721      | [Quan]        |              |              |               |          |                |            |                            |                   |               |               |               |            |               |                           |                                 | -           |
| Batch View                | Compounds             | <b>≁</b> ₽ ×  | Sample       | Results       |               |              |              |               |          |                |            |                            |                   |               |               |               |            |               |                           |                                 | ₩ Ĥ ×       |
|                           | Compound              | RT            | ) \$C        |               | a Filename a  | Sample Type  | A Height     | a Area a      | Excluded | a The a        | Сф         | %Diff                      | a %RSD            | φ % CV        | 0 m/z (Delta) | a RT Delta    | φ Fl       | 4 Library Sco | core (%) 🕴 👘 📼 m/z (Ap    | ex) 👍 Lib Match Name            | • -= ^      |
| Samples                   | <u>A</u> a •          | Aa            |              | Aa            | <u>A</u> a -  | <u>A</u> a • | <u>A</u> a ▼ | <u>A</u> a ▪  |          | Aa             | <u>A</u> a | <u>A</u> a ▼               | <u>A</u> a ▼      | <u>A</u> a ▼  | <u>A</u> a ▼  | <u>A</u> a ▼  | = -        | =             | - <u>A</u> a              | - <u>A</u> a -                  |             |
| ▼ Data Review >           | 37 Fenpropimorph      | 5.82          | ⊕ 64         | ✓             | MES_1ppb_03   | Chk Std      | N/F          | N/F           |          | 0.133          | N/F        | NaN                        | 0.00              | 0.00          | N/F           | N/F           |            | N/A           | 64 N/F                    | N/A                             |             |
|                           | 38 Fenpyroximate      | 8.81          | ⊕ 65         | ~             | MES_1ppb_04   | Chk Std      | N/F          | N/F           |          | 0.133          | N/F        | NaN                        | 0.00              | 0.00          | N/F           | N/F           |            | N/A           | 65 N/F                    | N/A                             |             |
| Sample View               | 39 Fenuron            | 3.57          |              | ✓             | MES_1ppb_05   | Chk Std      | N/F          | N/F           |          | 0.133          | N/F        | NaN                        | 0.00              | 0.00          | N/F           | N/F           |            | N/A           | 66 N/F                    | N/A                             |             |
| Compound View             | 40 Fluazinam          | 6.72          | ⊕ 67         | ✓             | MES_5ppb_01   | Chk Std      | 303929       | 493714        |          | 0.660          | 0.592      | -10.26                     | 4.20              | 5.14          | .5735 (ppm)   | 0.00          | •          | 91            | 67 422.2077               | Fenpyroximate                   |             |
|                           | 41 Flubenzimine       | 7.74          | ± 68         |               | MES_5ppb_02   | Chk Std      | 272420       | 527461        |          | 0.660          | 0.625      | -5.27                      | 4.20              | 5.14          | .7903 (ppm)   | 0.00          | •          | 91            | 68 422.2078               | Fenpyroximate                   |             |
| Report View               | 43 Eluometuron        | 4.87          | ± 69         |               | MES_5ppb_03   | Chk Std      | 352162       | 518690        |          | 0.660          | 0.617      | -6.57                      | 4.20              | 5.14          | -1.4504 (ppm  | ) 0.00        | •          | 97            | 69 422.2068               | Fenpyroximate                   |             |
| T Lord Mathed             | 44 Fluoxastrobin      | 6.29          | . 70         | ✓             | MES_Sppb_04   | Chk Std      | 276989       | 515928        |          | 0.660          | 0.614      | -6.97                      | 4.20              | 5.14          | 4385 (ppm)    | 0.00          |            | 91            | 70 422.2072               | Fenpyroximate                   |             |
| + Local Metriou           | 45 Flusilazole        | 6.75          |              |               | MES_SPPD_US   | Chk Std      | 2/1884       | 403104        |          | 0.000          | 0.502      | -14.78                     | 4.20              | 5.14          | .0457 (ppm)   | 0.00          |            | 97            | 71 422.2077               | Fenpyroximate                   |             |
| Acquisition               | 46 Furalaxyl          | 5.61          | . 72         | <b>V</b>      | MES_TOPPD_01  | Chk Std      | 480408       | 900780        |          | 1.330          | 1.048      | -21.23                     | 5.90              | 0.03          | .5012 (ppm)   | 0.01          |            | 95            | 72 422-2070               | Fenpyroximate                   |             |
| Quantitation              | 47 Furathiocarb       | 7.94          | 0 74         | ▼             | MES_10ppb_02  | Chk Std      | 598248       | 1156622       |          | 1.330          | 1.100      | -13.10                     | 5.90              | 6.52          | 1209 (npm)    | 0.00          |            | 01            | 73 422-2079               | Fenpyroximate                   |             |
|                           | 48 Hexaconazole       | 7.21          | 0 74         | <u>v</u>      | MES_10ppb_03  | Chik Std     | 529240       | 1060511       |          | 1,330          | 1.145      | 12.02                      | 5.00              | 6.52          | .1350 (ppm)   | 0.00          |            | 100           | 74 422.2013               | Fenpyroximate                   |             |
| Processing                | 49 Hexythiazox        | 8.39          | @ 76         | · ·           | MES_10ppb_04  | Chik Std     | 569272       | 1067406       |          | 1 220          | 1.140      | 12.41                      | 5.00              | 6.52          | 0771 (ppm)    | 0.00          |            | 07            | 75 422.2014               | Fennyroximate                   |             |
| Compounds                 | 50 Hydramethylnon     | 7.86          | a 77         | •             | MES_TOPpb_03  | Chik Std     | 2016650      | 5652227       |          | 6.660          | 5.622      | -15.50                     | 2.07              | 2.11          | - 2020 (ppm)  | 0.00          | - 1        | 100           | 70 422.2013               | Fennyroximate                   |             |
| QAQC                      | 51 Imazalil           | 5.07          | 0 70         |               | MES_SOppb_07  | Chik Std     | 2725515      | 5624691       |          | 6 660          | 5 504      | -16.01                     | 2.07              | 2.11          | - 0049 (ppm)  | 0.00          |            | 100           | 78 422.2073               | Fennyroximate                   |             |
| Reports                   | 52 Imidacloprid       | 3.40          | 9 70         |               | MES_S0ppb_02  | Chk Std      | 2044184      | 5712949       |          | 6 660          | 5.690      | -14 72                     | 2.07              | 2.11          | 1209 (nnm)    | 0.00          |            | 100           | 79 422.2074               | Fennyroximate                   |             |
|                           | 53 Ipconazole         | 7.73          | E 80         |               | MES_50ppb_03  | Chk Std      | 2942604      | 5932363       |          | 6.660          | 5 894      | -11.51                     | 2.07              | 2.11          | 6457 (ppm)    | 0.00          |            | 100           | 80 422 2077               | Fennyroximate                   |             |
|                           | 54 Isoproturon        | 5.17          | · · · · ·    | 2             | MES 50ppb_01  | Chk Std      | 2926482      | 5748267       |          | 6.660          | 5.714      | -14.20                     | 2.07              | 2.11          | .4289 (nnm)   | 0.00          |            | 100           | 81 422,2076               | Fennyroximate                   |             |
|                           | 55 Manaipropamia      | 5.90          | E 82         |               | MES 100mpb 01 | Chk Std      | 5727551      | 11499522      |          | 13,300         | 11.320     | -14.89                     | 1.31              | 1.32          | 1.0071 (nnm)  | 0.00          |            | 100           | 82 422,2079               | Fennyroximate                   |             |
|                           | 57 Metalavyl          | 5.05          | + 83         |               | MES 100ppb 02 | Chk Std      | 5713260      | 11301064      |          | 13,300         | 11,127     | -16.34                     | 1.31              | 1.32          | .4289 (ppm)   | 0.00          |            | 100           | 83 422.2076               | Fenpyroximate                   |             |
|                           | 58 Methabenzthiazuron | 5.31          | ⊕ 84         | ~             | MES 100ppb 03 | Chk Std      | 5539564      | 11624657      |          | 13.300         | 11,442     | -13.97                     | 1.31              | 1.32          | .0675 (ppm)   | 0.00          |            | 100           | 84 422.2075               | Fenpyroximate                   |             |
|                           | 59 Methamidophos      | 1.90          | . 85         | 1             | MES 100ppb 04 | Chk Std      | 5950707      | 11700400      |          | 13.300         | 11.516     | -13.41                     | 1.31              | 1.32          | .2121 (ppm)   | 0.00          |            | 100           | 85 422.2075               | Fenpyroximate                   | ~           |
|                           | Compound Details      |               | 11           |               |               |              |              |               |          |                |            |                            |                   |               |               |               |            |               |                           |                                 | <b>-</b> ↓× |
|                           | Quan Peak             |               |              |               |               |              | = X Fr       | armente       | ~        |                |            |                            |                   |               | = ×           | Library Mate  | h v        |               |                           |                                 | = ×         |
|                           | Quarreak              |               |              |               |               |              |              | iginenti      |          |                | Mi         | nimum # of                 | fragments p       | adad: 1       | • ~           | Contrary more |            | #1.5          |                           | Convertion Reals 1 of           | 2 14 00102  |
|                           | Fenpyroximatem/z: 422 | 2074          |              |               |               |              |              | All Fragments | MMS      | S_10ppb_0      | 07 #: 51   | 84 RT: 8.                  | 80                | ceded. I      | 0100000       | #1: Fenp      | pyroximate | 100 #5184     | 4 F'ETMS + c ESI Full ms2 | 400 0000@hcd37 67 [50           | 0000-53     |
|                           |                       |               |              | T 8 81        |               |              |              | #1: 366.1451  | F: F     | TMS + c E      | SI Full n  | ns2 400.000                | 00@hcd37.6        | 7 [50.0000-53 | 35.1000]      | 🔵 #2: Fenp    | oyroximate | 89 100        | 0-                        |                                 |             |
|                           |                       |               |              | AA: 10141     | 727           |              | 10           | #2: 231.1004  |          | 6.0E6          |            |                            |                   |               |               |               |            | Tage 100      | E I                       |                                 |             |
|                           |                       |               |              | SN: INF       |               |              |              | #2, 215 1055  | =        | 4.0E6-         |            |                            |                   |               |               |               |            | Ë 50          | 0                         | 266 1444                        |             |
|                           | ≩ 4000000-            |               |              |               |               |              |              | • •5:215:1035 |          | 2056           |            |                            |                   |               | *1            |               |            | xpel          | 214.0981                  | 300.1444                        |             |
|                           | · 1000000-            |               |              |               |               |              |              | #4: 214.0976  | 2        |                | Libed to 1 | *4                         | a                 |               | - 1 - I       |               |            | ш с           | 100 200                   | 300 400 50                      | 00          |
|                           | 2000000-              |               |              |               |               |              |              | #5: 138.0663  | Itens    | t erel         |            | A Real Products of Process |                   |               | #1]           |               |            | #0910         | 02 E ETMO + n EOI d Eulin | 100 000 000 000 000 000 000 000 | 05 00 42    |
|                           | 1000000-              |               |              |               |               |              |              |               | 5        | 1.560          |            |                            |                   |               |               |               |            | #5015         |                           | 152 422.00@01040.00[10          | 0.00-45     |
| Acquisition               | 01E0                  |               |              | /             |               |              | -            |               |          | 1.0E6          |            |                            |                   |               |               |               |            | 100           | °E s                      | 67.1482 366.1448                | 1           |
| requisition               | 8.6                   | 8             |              | 8.8<br>RT(min | 8.9           | 9.0          |              |               |          | 5.0E5 #        | 5          | #4                         | -                 |               |               |               |            | prar 50       | 네                         | ~                               |             |
| Analysis                  | m/z: 422.2074         |               |              |               |               |              | ^            |               |          | 0 <sup>1</sup> |            |                            | -#3<br>1+1+1+1+1+ |               |               |               |            | 2             | 0                         | 1                               | less.       |
| Mathed Davalanment        | Apex RT: 8.81 Left R  | T: 8.77 R     | ight RT: 8.8 | 5             |               |              |              |               |          | 1              | 50         | 200                        | 250               | 300           | 350           |               |            |               | 100 200                   | 300 400 50                      | 10          |
| Method Development        | Area: 10141727 Heigr  | IG 4024027 IN | ioise: 0.00  |               |               |              | ~            |               |          |                |            |                            | 11/2              |               |               |               |            |               |                           | 182                             |             |

Figure 6. A quick overview of Fenpyroximate quantitation with library scoring of 100% and  $\Delta$ ppm of  $\leq$  1 ppm at 10 ppb concentration level shown above.

In Figure 7, elemental composition and the ChemSpider database were used to identify and label with the probable compound(s) in question. For cumin, an unknown was identified as elaidolinolenic acid (Figure 8).

A unique compound called 1-Dodecyl-2-pyrrolidinone was tentatively identified and more research will need to be done on the compound to confirm its identity (Figure 9). For garlic samples, several compounds were identified; (e.g., octhilinone which is a fungicide and antibacterial agent used for treatment of canker and other fungal and bacterial diseases in fruit trees). Proxan is a non-steroidal anti-inflammatory drug used to treat pain or inflammation in humans which could have found its way through the water supply to the farm. Both compounds were identified through ChemSpider but further research will need to be done to confirm them (Figure 10 and 11 respectively).



Figure 7. Quick overview of unknown screening where identification is quickly listed. Here is a highlighted example of benzylpiperazine found in garlic sample which was not targeted.

Figure 8. Quick overview of unknown screening which found an unknown and identified as Elaidolinolenic acid.

| Data    | Data Review - Pesticide Cumin Screener [Quan with Unknown] * |            |           |             |              |                        |                       |          |           |          |                       |                |           |       |           |            |           |          |                      |                   |
|---------|--------------------------------------------------------------|------------|-----------|-------------|--------------|------------------------|-----------------------|----------|-----------|----------|-----------------------|----------------|-----------|-------|-----------|------------|-----------|----------|----------------------|-------------------|
| Heat Ma | р                                                            |            |           |             |              |                        |                       |          |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| (P)     | Retention T                                                  | lime       | M/Z       |             | Mass         | MES_blnk_03<br>MS Area | MES_100ppb<br>MS Area | .00      |           |          |                       |                |           |       |           |            |           |          |                      | ^                 |
|         | -                                                            |            |           |             | 61 .         | = ·                    | -                     | •        |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 13      |                                                              | 4.28       |           | 250.1799    | 249.3115     | 1,353,335,727          | 1,207                 | ,233,613 |           |          |                       |                |           |       |           |            |           |          |                      | _                 |
| 14      |                                                              | 6.16       |           | 231.1380    | 230.2688     | 1,263,136,908          | 1,261                 | ,133,688 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 15      |                                                              | 6.40       |           | 233.1537    | 232.2866     | 1,262,546,596          | 1,125                 | ,307,895 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 16      |                                                              | 6.80       |           | 424.1968    | 423.3794     | 1,224,185,988          | 1,091                 | ,537,105 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 17      |                                                              | 8.19       |           | 279.2320    | 278.3892     | 1,189,383,617          | 977                   | ,251,174 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 18      |                                                              | 5.45       |           | 271.0599    | 270.1930     | 1, 149, 728, 185       | 1,069                 | ,735,027 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 19      |                                                              | 5.87       |           | 322.2011    | 321.3589     | 1,132,042,781          | 1,033                 | 676,122  |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 20      |                                                              | 10.39      |           | 423.3260    | 422.5613     | 1,081,397,582          | 866                   | ,235,631 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 21      |                                                              | 4.72       |           | 264.1957    | 263.3354     | 1,038,278,438          | 934                   | ,640,507 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 22      |                                                              | 9.37       |           | 372.3112    | 371,4937     | 1,010,604,586          | 789                   | 418,967  |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 23      |                                                              | 5.19       |           | 298.1799    | 297.3442     | 1,007,824,335          | 843                   | ,882,524 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| 24      |                                                              | 3.67       |           | 350.2171    | 349.3627     | 976,124,226            | 841                   | ,086,289 |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| Heat Ma | Cross Sam                                                    | 10 20      | ist       | A 75. A 760 | 6.7A 0000    | 060 000 000            | 14.1                  | 1000     |           |          |                       |                |           |       |           |            |           |          |                      |                   |
| Sample  | int                                                          | -          | _         | _           |              |                        | P × Peak I            | int.     | _         | _        |                       |                | V X Reak  | denti | fe stirm. | _          | _         |          |                      | - 0 ×             |
| (E Bat  | Status                                                       | Filen      | ame       | Sample      | ID Sample N  | lame Sample Type       | 80                    | Selecto  | d a M/Z - | Mass 👳   | Mono Isotopic Mass 👍  | Retention Time | Pc · at r |       | Selected  | ID Source  | ID Source | e Detail | Match Repult Name    | hormul            |
| -       | <u>6</u>                                                     | <u>é</u> a | - 6       | ря          | - <u>6</u> + | · 64 ·                 |                       | 6× •     |           |          |                       |                | 6         |       | Au +      | Aa •       | Aa        | -        | Aa -                 | Aa                |
| 1 1     | •                                                            | MES_bi     | nk_03 1   |             | MES_blnk_03  | Matrix Blank           | 26                    |          | 233.1537  | 232.2066 | 232.1464              | 6.40           | 3 1       |       | -<br>7    | ChemSpider | 4445949   |          | Elaidolinolenic acid | C18H300;          |
| 2 2     | •                                                            | MES_10     | 0ppb_03 1 |             | MES_100ppb   | _03 Chk Std            | 27                    |          | 251.1643  | 250.2979 | 250.1570              | 6.41           | 3 2       |       |           | ChemSpider | 4444437   |          | Alpha-Linolenic acid | C18H300;          |
|         |                                                              |            |           |             |              |                        | 20                    |          | 424.1968  | 423.3794 | 423.1895              | 6.80           | 6 3       |       |           | ChemSpider | 4444436   |          | Gamma-Linolenic acid | C18H300.          |
|         |                                                              |            |           |             |              |                        | 29                    |          | 235.1694  | 234.3036 | 234.1621              | 7.10           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 30                    |          | 252.1960  | 251.3242 | 251.1887              | 7.25           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 31                    |          | 199.1482  | 198.2731 | 198.1410              | 7.26           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 32                    |          | 119.0856  | 118.0782 | 118.0783              | 7.26           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 33                    |          | 189.1639  | 188.1564 | 188.1566              | 7.27           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 34                    |          | 207.1744  | 206.1670 | 205.1672              | 7.27           | 3         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 35                    |          | 408.2020  | 407.3850 | 407.1948              | 7.76           | 6         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 36                    |          | 291.1230  | 290.2649 | 290.1158              | 7.95           | 5         |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        | 37                    |          | 279.2320  | 278.3892 | 278.2248              | 8.19           | 3 🗸       |       |           |            |           |          |                      |                   |
|         |                                                              |            |           |             |              |                        |                       |          |           |          |                       |                | > <       |       |           |            |           |          |                      | >                 |
| Group A | verages                                                      |            |           |             |              |                        |                       |          |           | - 4      | × Cross Sample Peak C | lverlay        |           |       |           |            |           |          |                      | <b>→</b> 9 ×      |
| 12060   | 37930                                                        |            |           |             |              |                        |                       |          |           |          | ≥ 100 3               |                |           |       |           | 4          |           |          |                      | 4_60              |
| 11060   | 37930                                                        |            |           |             |              |                        |                       |          |           |          |                       |                |           |       |           | $\Lambda$  |           |          |                      | ME5_100<br>ppb_03 |
| 10560   | 37930                                                        |            |           |             |              |                        |                       |          |           |          | 1 1                   |                |           |       |           | / \        |           |          | ()                   |                   |
| 10060   | 37930                                                        |            |           |             |              |                        |                       |          |           |          |                       |                |           |       | _         |            | ~         |          |                      |                   |
| 9660    | 1950                                                         |            |           | 1           |              |                        |                       | 2        |           |          | 7.7                   | 7.8 7.9        | 8.0       |       | 8.1       | 8.2        | 83        | 8.4      | 8.5 8.6              |                   |

Figure 9. A unique compound called 1-Dodecyl-2-pyrrolidinone was also identified.

| Data    | Review - P  | esticide          | Cumin Screener | Qu       | an with Unknown |                        |                       |                  |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
|---------|-------------|-------------------|----------------|----------|-----------------|------------------------|-----------------------|------------------|-----------|----------|-----------------------|-------------------|-------|---------|--------------|--------------|-------------|---------------|-----------------|--------------------|
| Heat Ma | Hest Map    |                   |                |          |                 |                        |                       |                  |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| æ       | Retention T | lime              | M/Z            |          | Mass -          | MES_blnk_03<br>MS Area | MES_100ppl<br>MS Area | b_03             |           |          |                       |                   |       |         |              |              |             |               |                 | ~                  |
|         | -           |                   |                |          | 6a •            |                        | -                     |                  |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 1       |             | 9.72              | 282.2          | 792      | N/A             | (                      | 2.000.                | 512.904          |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 2       |             | 7.26              | 119.0          | 856      | 118.0782        | 702,395,574            | 75                    | 3,898,032        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 3       |             | 3.30              | 149.0          | 1960     | 148.0886        | 670,714,865            | 61                    | 1,504,056        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 4       |             | 5.99              | 149.0          | 961      | 148.0887        | 695,490,015            | 72                    | 2,987,076        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 5       |             | 5.98              | 163.1          | 117      | 162.1043        | 2,181,872,701          | 2,22                  | 5,601,869        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 6       |             | 7.26              | 189.1          | 639      | 188.1564        | 3,502,934,653          | 3,50                  | 6,406,835        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 7       |             | 5.39              | 199.1          | 151      | 198.1076        | 835,533,318            | 76                    | 6,713,014        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 8       |             | 7.26              | 199.1          | 482      | 198.2731        | 684,576,985            | 70                    | 1,955,978        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 9       |             | 7.26              | 207.1          | 744      | 206.1670        | 2,996,944,212          | 3,09                  | 3,396,451        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 10      |             | 6.11              | 218.1          | 540      | 217.1466        | 1,916,128,125          | 1,79                  | 2,226,663        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| -11     |             | 6.16              | 231.1          | 380      | 230.2688        | 1,263,136,908          | 1,26                  | 1,133,688        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| 12      |             | 6.40              | 233.1          | 537      | 232.2866        | 1,262,546,596          | 1,12                  | 9,307,895        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| Heat Ma | P Cross Sam | 7 10<br>pple Peak |                | KOA.     | 3000 800        | 060 101 067            | 00                    | 1 107 002        |           |          |                       |                   |       |         |              |              |             |               |                 |                    |
| -       |             |                   |                | -        |                 |                        |                       |                  |           |          |                       |                   |       |         |              |              |             |               |                 | - 1 - 2            |
| Sample  | list        | El.               |                | a a la l | D Complet       | -                      | Peak                  | lict<br>Colorite | 4 a 14/7  | Maria    | Mana Instania Man     | Between Trees     | Per a | ik Iden | trications   |              |             | _             |                 |                    |
| Ra out  | Status      | riter             | ame san        | npre     | Sample N        | sample typ             | 89                    | Selecte          | a a NVZ - | Midss -  | mono isocopic mass    | Netenbon time = - | e a   |         | Selected     | ID Source    | ID Source D | letail 👳 Mate | h Result Name   | Formul             |
|         |             | Ba                | • 54           |          | • 51            | * 64 *                 |                       | ~ ~              | -         |          |                       |                   | 50 L  |         | <u>A</u> a • | <u>6</u> • • | 60          | - <u>A</u> a  | •               | 60                 |
|         |             | MES_B             | ink_us I       |          | MES_DIRK_US     | Chi Chi Chi            | 56                    |                  | 291.1228  | 290,2030 | 290.1155              | 7.96              |       | 1       |              | ChemSpider   | 4446508     | (9Z)-9        | -Octadecenamide | C18H35N            |
| 2 ·     | 2 🛡         | MES_1             | Nppb_US 1      |          | MES_TOUPPD      | US Chik Sta            | 3/                    |                  | 279,2317  | 278.3903 | 276,2244              | 0.19              |       | 2       | ~            | ChemSpider   | 39176       | 5422          |                 | C18H35N            |
|         |             |                   |                |          |                 |                        | 20                    |                  | 207 2422  | 206 4027 | 206 2251              | 9.61              |       | 3       |              | ChemSpider   | 4510066     | Elaida        | mide            | C18H35N            |
|         |             |                   |                |          |                 |                        | 39                    |                  | 457 2674  | 456.6100 | 456 2001              | 8.92              |       |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 40                    |                  | 619 2020  | 618 8926 | 618 2916              | 9.24              |       |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 47                    | H                | 255,2317  | 254.3742 | 254,2244              | 9.27              |       |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 43                    | H                | 281,2473  | 280.4051 | 280,2400              | 9.27              |       |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 44                    |                  | 372,3107  | 371,4950 | 371,3035              | 9.37              | 2     |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 45                    | Ä                | 496,3399  | 495,5465 | 495.3326              | 9.42              |       |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 46                    |                  | 522.3555  | 521.5767 | 521.3483              | 9.45              | 3     |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | 47                    |                  | 282.2792  | 281,4352 | 281.2719              | 9.72              | 3     |         |              |              |             |               |                 |                    |
|         |             |                   |                |          |                 |                        | <                     |                  |           |          |                       |                   | > <   |         |              |              |             |               |                 | >                  |
| Group A | werages     |                   | _              |          |                 |                        |                       |                  | _         | - 0      | × Cross Sample Peak O | verlay            |       |         |              |              |             |               |                 | • * ×              |
| 2000    |             |                   |                |          |                 |                        |                       |                  |           |          | 100-3                 |                   |       |         |              |              |             |               |                 | MES. No.           |
| 1500    |             |                   |                |          |                 |                        |                       |                  |           |          | 100                   |                   |       |         |              | N            |             |               |                 | MED_100            |
| 1000    |             |                   |                |          |                 |                        |                       |                  |           |          | 1 50-                 |                   |       |         |              | I            |             |               |                 | MM6 <sup>-03</sup> |
| 5000    | 000000      |                   |                |          |                 |                        |                       |                  |           |          | 1910                  |                   |       |         |              | / \          |             |               |                 |                    |
|         | 0           |                   |                | -        |                 |                        |                       |                  |           |          |                       | 94                | 95    | 3.0     |              | 97 98        | 99          | 10.0          | 10.1            | 10.2               |
|         |             |                   |                | 1        |                 |                        |                       |                  | 2         |          |                       |                   |       | 3.0     |              | RT(min)      |             |               |                 |                    |



| creener rea |       | oniation |              |                |                          |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
|-------------|-------|----------|--------------|----------------|--------------------------|------------------------|------------|---------------|------------|-------------|---------------|---------|--------------|--------------|--------------|--------|--------------------|--------------|-----------------|--------------|
|             |       |          |              |                |                          |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
|             | Mass  |          | MES_<br>MS A | blnk_03<br>rea | MES_100ppb_04<br>MS Area |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 | ^            |
|             | A     |          |              |                |                          |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 194,1177    |       | 193.11   | 03           | 27,354,465     | 19,384,298               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 214,1227    |       | N        | (A           | 0              | 314.605.234              |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 251.0230    |       | N        | (A           | 0              | 683,643,015              |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 177.1307    |       | 176.13   | 13           | 22,226,929     | 23,337,903               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 131.0526    |       | N        | /A           | 0              | 312,472,918              |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 238.0898    |       | N        | A            | 0              | 387,011,192              |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 242.1176    |       | N        | /Δ           | 0              | 329,594,603              |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 159.0654    |       | 158.05   | 79           | 57,513,644     | 3,186,449                |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 159.0652    |       | 158.05   | 78           | 57,513,644     | 33,957,407               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 236.1130    |       | 235.10   | 56           | 58,840,889     | 34,452,632               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 198.1279    |       | 197.25   | 23           | 29,239,472     | 25,397,186               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| 207.1592    |       | 206.15   | 18           | 29,909,710     | 27,721,632               |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 | v.           |
|             |       |          |              |                |                          |                        |            |               |            |             |               |         |              |              |              |        |                    |              |                 |              |
| Peak List   |       | _        |              | _              |                          |                        | _          |               | _          | _           | <b>▼</b> 0 ×  | Peakide | ntifications |              |              |        |                    |              |                 | • • ×        |
| E Select    | ted 0 | M/7 👳    | Mass 👝       | Mono Isotopic  | Mass 😄 Retention T       | ime 🚽 💿 Potential ID 🚽 | Area 😄     | Height a      | Database o | mzVault     | Elemental C ^ | ALC: N  | Selected     | ID Source    | ID Source    | Detail | Match Result Name  | Formula      | Instanic Patter | n Score (%)  |
| Aa          |       |          |              |                |                          | • As •                 |            |               | Aa 🕶       | Aa 🕶        | As            | 8-11    | buccies -    | to bource in | in source    | -      |                    | to remote to | -               | rotore (ny 5 |
| 1           | 1     | 94 1176  | 193 1102     |                | 193.1104                 | 2.68 3                 | 19 384 298 | 6 290 976 25  | N/A        | N/A         | N/A           | 1.1     | · ·          | C* • •       | 200222       | •      |                    |              | -               |              |
| 2           | 1     | 14 1227  | 213.1153     |                | 213.1155                 | 2.94 3                 | 14 605 234 | 54 138 464 00 | N/A        | N/A         | N/A           |         |              | Chemopider   | 20226        |        | octhilinone [ANSI] | CHIMISNOS    |                 | NVA NVA      |
| 3           |       | 51.0230  | 250.0156     |                | 250.0157                 | 3.05 2                 | 83 643 015 | 52 026 943.92 | N/A        | N/A         | C3H8O8N4P     | 6       |              | Chemopider   | 500000       |        | 1212020            | CIAITISNO    |                 | NVA NVA      |
| 4           | 1     | 77.1387  | 176.1313     |                | 176.1314                 | 3.15 4                 | 23,337,903 | 9,193,801.97  | N/A        | N/A         | C11H17NZ      |         |              | chemaphoer   | STREET,      |        | 2000210            | CHAILING     |                 | 10011        |
| 5           |       | 31.0526  | 130.0452     |                | 130.0453                 | 3.17 3                 | 12,472,918 | 71,218,128.05 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 6           |       | 38.0898  | 237.0824     |                | 237.0825                 | 3.21 3                 | 87,011,192 | 71,598,808.01 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 7 0         |       | 42.1176  | 241.2477     |                | 241.1104                 | 3.26 3                 | 29,594,603 | 34,046,417.62 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 8 [         |       | 159.0653 | 158.0579     |                | 158.0580                 | 3.43 3                 | 3,186,449  | 2,133,602.54  | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 9 [         |       | 59.0653  | 158.0579     |                | 158.0581                 | 3.50 3                 | 33,957,407 | 18,713,841.10 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 10 0        |       | 36.1131  | 235.1056     |                | 235.1058                 | 3.50 3                 | 34,452,632 | 18,749,936.16 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 11 D        |       | 198.1280 | 197.1205     |                | 197.1207                 | 3.59 0                 | 25,397,186 | 11,967,173.56 | N/A        | N/A         | N/A           |         |              |              |              |        |                    |              |                 |              |
| 12 F        | 7 3   | 07.1593  | 206.1519     |                | 206.1520                 | 3.72 0                 | 27 721 632 | 6 869 346.62  | N/A        | N/A         | N/A ~         |         |              |              |              |        | _                  |              |                 |              |
| <           |       | _        |              |                |                          |                        | _          |               |            |             | >             |         | _            | _            | _            | _      |                    |              | _               |              |
|             | _     | _        | _            | _              |                          |                        | _          | • • .         | Cross Sam  | ple Peak Ov | erløy         | _       | _            | _            |              | _      |                    | _            |                 | • • •        |
|             |       |          |              |                |                          | ÷                      |            |               | - 00       |             |               |         |              |              | A            |        |                    |              |                 | 1.00         |
|             |       |          |              |                |                          |                        |            |               | tr 60      |             |               |         |              |              |              |        |                    |              |                 | spb_04       |
|             |       |          |              |                |                          |                        |            |               | 8 40       |             |               |         |              |              | 11           |        |                    |              |                 |              |
|             |       |          |              |                |                          |                        |            |               | 20-        |             |               |         |              |              | 1            |        |                    |              |                 |              |
|             |       |          |              |                |                          |                        |            |               | ہتہ "      |             |               |         |              |              |              |        |                    |              |                 |              |
|             | 1     |          |              |                |                          | 2                      |            |               |            | 25          | 2.6           | 27      | 2            | 8 2          | 9<br>RT(min) | 3.0    | 3.1                | 3.2          | 3.3             | 3.4          |
|             |       |          |              |                |                          |                        |            |               | -          |             |               |         |              |              |              |        |                    |              |                 |              |





Figure 12A–12D shows typical calibration curves (0.5–100 ng/mL) for Azoxystrobin, Zoxamide, Triflumizolem and Mefenacet in cumin and garlic (respectively). Over 95% of the pesticides studied had calibration curves with  $r^2 > 0.990$  (Tables 2 and 3). Confirmation fragment ions are displayed in the middle of each panel at 0.5, 1 and 5 ng/mL for each pesticide, with indicator color (green) highlights that are easily visible to show passing fragment ions and curated mzCloud local spectra library criteria. A method of 100 pesticides was developed and optimized to ensure that at least one fragment ion was detected per compound while the LODs and LOQs were determined as outlined by the SANTE Guidance (SANTE/12682/2019).<sup>2</sup>

#### A) Azoxystrobin



#### **B)** Zoxamide



#### C) Triflumizolem



#### D) Mefenacet



Figure 12. The quantitation and confirmation ions along with calibration range from 0.5 to 100 ppb for (A and B in Cumin) Azoxystrobin at 5 ppb and Zoxamide at 0.5 ppb and (C and D in Garlic) Triflumizolem at 0.5 ppb and Mefenacet at 1 ppb shown in TraceFinder software. All results have excellent R<sup>2</sup> and MS<sup>2</sup> fragment ion matching. The technique allows for confident quantitation and screening with confirmation well below or at the MRL concentration.

## thermo scientific

### Conclusion

A select targeted panel of pesticides for quantitative analysis at levels below or at EU MRLs have been shown to provide excellent sensitivity and robustness in cumin and garlic. TraceFinder software provides the flexibility to quickly identify unknown contamination within samples using the unknown feature of the software. The capability to search online databases helps to identify unknowns given the excellent mass accuracy and high-resolving power of the Orbitrap Exploris 120 mass spectrometer. These features significantly lower the number of IDs possible and the new AcquireX workflow, utilizing automatic background subtraction, makes identification easier. Ongoing work is required to determine the true unknown chemicals by either chemical synthesis, NMR or other techniques to prove the authenticity of the unknown identifications.

#### References

- 1. SANTE Guidelines https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance\_ SANTE\_2019\_12682.pdf (accessed Mar. 2021).
- 2. SANTE Guidelines https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides\_ mrl\_guidelines\_wrkdoc\_2017-11813.pdf (accessed Mar. 2021).

## Find out more at thermofisher.com/pesticides



For Research Use Only. Not for use in diagnostic procedures. © 2021 Thermo Fisher Scientific Inc. All rights reserved. ChemSpider is a trademark of the Royal Society of Chemistry and Ultra Scientific is a trademark of Agilent Technologies, Inc. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. AN65983-EN 0421M